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ABSTRACT: The solutions of heat and mass transfer problem, growth problem of cells, electric circuit 

problem, drugs delivery problem and spring-mass problem easily determined by developing their 

mathematical model in terms of Volterra integro-differential equations or their system . In this paper, authors 

present Laplace transform for obtaining the solution of system of second kind linear Volterra integro-

differential equations. Two numerical problems have been considered and solved using Laplace transform for 

explaining the applicability of Laplace transform. Results of numerical problems show that the Laplace 

transform is very effective for determining the solution of system of second kind linear Volterra integro-

differential equations. 

KEYWORDS: Volterra Integro-Differential Equation; Laplace Transform; Convolution; Inverse Laplace 

Transform 

MATHEMATICS SUBJECT CLASSIFICATION: 44A10, 45J05, 45A05, 45D05. 

INTRODUCTION: Nowadays integral transforms are mostly used mathematical techniques for solving the 

problem of physical science and engineering by modeled them in terms of differential equations, partial 

differential equations, integral equations, system of differential equations, system of partial differential 

equations and system of integral equations. System of second kind Volterra integro-differential equations 

appears when we convert higher order initial value problem into integral equation. Aggarwal and other 

scholars [1-8] used different integral transformations (Mahgoub, Aboodh, Shehu, Elzaki, Mohand, Kamal) 

and determined the analytical solutions of first and second kind Volterra integral equations.  

Solutions of the problems of Volterra integro-differential equations of second kind are given by 

Aggarwal et al. [9-11] with the help of Mahgoub, Kamal and Aboodh transformations. In the year 2018, 

Aggarwal with other scholars [12-13] determined the solutions of linear partial integro-differential equations 

using Mahgoub and Kamal transformations. Aggarwal et al. [14-20] used Sawi; Mohand; Kamal; Shehu; 

Elzaki; Laplace and Mahgoub transformations and determined the solutions of advance problems of 

population growth and decay by the help of their mathematical models.  

Aggarwal et al. [21-26] defined dualities relations of many advance integral transformations. 

Comparative studies of Mohand and other integral transformations are given by Aggarwal et al. [27-31]. 
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Aggarwal et al. [32-39] defined Elzaki; Aboodh; Shehu; Sumudu; Mohand; Kamal; Mahgoub and Laplace 

transformations of error function with applications. The solutions of ordinary differential equations with 

variable coefficients are given by Aggarwal et al. [40] using Mahgoub transform. Aggarwal et al. [41-45] 

used different integral transformations and determined the solutions of Abel’s integral equations.  

Aggarwal et al. [46-49] worked on Bessel’s functions and determined their Mohand; Aboodh; 

Mahgoub and Elzaki transformations. Chaudhary et al. [50] gave the connections between Aboodh transform 

and some useful integral transforms. Aggarwal et al. [51] used Kamal transforms for solving linear Volterra 

integral equations of first kind. Solution of population growth and decay problems was given by Aggarwal et 

al. [52-53] by using Aboodh and Sadik transformations respectively.  

Aggarwal and Sharma [54] defined Sadik transform of error function. Application of Sadik transform 

for handling linear Volterra integro-differential equations of second kind was given by Aggarwal et al. [55]. 

Aggarwal and Bhatnagar [56] gave the solution of Abel’s integral equation using Sadik transform. A 

comparative study of Mohand and Mahgoub transforms was given by Aggarwal [57]. Aggarwal [58] defined 

Kamal transform of Bessel’s functions. Chauhan and Aggarwal [59] used Laplace transform and solved 

convolution type linear Volterra integral equation of second kind.  

Sharma and Aggarwal [60] applied Laplace transform and determined the solution of Abel’s integral 

equation. Laplace transform for the solution of first kind linear Volterra integral equation was given by 

Aggarwal and Sharma [61]. Mishra et al. [62] defined the relationship between Sumudu and some efficient 

integral transforms. Aggarwal [63] proposed Kamal transform of Bessel’s functions. Aggarwal and other 

scholars [64-73] used Aboodh; Mohand; Kamal; Elzaki; Laplace-carson; Laplace; Sadik; Sawi; Sumudu and 

Shehu transformations for determining the solution of first kind Volterra integro-differential equation. 

Kumar and Aggarwal [74] considered Laplace transform and used it in solving system of linear 

Volterra integro-ordinary differential equations of first kind. Aggarwal et al. [75] determined the solutions of 

population growth and decay problems using Sumudu transform. Aggarwal et al. [76] proposed the Sawi 

transform of Bessel’s functions with application for evaluating definite integrals. Aggarwal et al. [77] 

determined the primitive of second kind linear Volterra integral equation using Shehu transform. Higazy et 

al. [78] used Sawi decomposition method for Volterra integral equation.  

Higazy et al. [79] determined the number of infected cells and concentration of viral particles in 

plasma during HIV-1 infections using Shehu transformation. Watugula [80] gave the Sumudu transform and 

solved differential equations and control engineering problems using it. Abdelilah and Hassan [83] used 

Kamal transform for solving partial differential equations. Kumar et al. [84] applied Mohand transform for 

solving linear Volterra integral equations of first kind.  

Applications of Mohand transform to mechanics and electrical circuit problems were given by Kumar 

et al. [85]. Aboodh et al. [86] solved delay differential equations by Aboodh transformation method. Solution 

of partial integro-differential equations by using Aboodh and double Aboodh transforms methods was given 
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by Aboodh et al. [87]. Mohand et al. [88] determined the solution of ordinary differential equation with 

variable coefficients using Aboodh transform.  

Elzaki and Ezaki [89] used Elzaki transform and determined the solution of ordinary differential 

equation with variable coefficients. Elzaki and Ezaki [90] used Elzaki transform for solving partial 

differential equations. Shendkar and Jadhav [91] applied Elzaki transform on differential equations for their 

solutions. 

The main aim of this paper is to determine the solution of system of second kind linear Volterra 

integro-differential equations with the help of Laplace transform. 

DEFINITION OF LAPLACE TRANSFORM: The Laplace transform of the function 𝐺(𝑡) for all 𝑡 ≥ 0 is 

defined as [81-82]: 

𝐿{𝐺(𝑡)} = ∫ 𝐺(𝑡)𝑒−𝑝𝑡𝑑𝑡
∞

0
= 𝑔(𝑝), where 𝐿 is Laplace transform operator. 

TABLE: 1 USEFUL PROPERTIES OF LAPLACE TRANSFORM [69] 

S.N. Name of Property Mathematical Form 

1 Linearity [𝐿{𝑎𝐺1(𝑡) + 𝑏𝐺2(𝑡)} = 𝑎𝐿{𝐺1(𝑡)} + 𝑏𝐿{𝐺2(𝑡)}] 

2 Change of Scale 
𝐿{𝐺(𝑎𝑡)} =

1

𝑎
𝑔 (
𝑝

𝑎
) 

3 Shifting 𝐿{𝑒𝑎𝑡𝐺(𝑡)} = 𝑔(𝑝 − 𝑎) 

4 First Derivative [𝐿{𝐺′(𝑡)} = 𝑝𝑔(𝑝) − 𝐺(0)] 

 

5 Second Derivative [𝐿{𝐺′′(𝑡)} = 𝑝2𝑔(𝑝) − 𝑝𝐺(0) − 𝐺 ′(0)] 

 

6 nth Derivative 

[

𝐿{𝐺(𝑛)(𝑡)}

= 𝑝𝑛𝑔(𝑝) − 𝑝𝑛−1𝐺(0) − 𝑝𝑛−2𝐺 ′(0)

−⋯…− 𝐺(𝑛−1)(0)

] 

 

7 Convolution [𝐿{𝐺1(𝑡) ∗ 𝐺2(𝑡)} = 𝐿{𝐺1(𝑡)}𝐿{𝐺2(𝑡)}] 

 

TABLE: 2 LAPLACE TRANSFORM OF USEFUL FUNCTIONS [59-61] 

S.N. 𝐺(𝑡) 𝐿{𝐺(𝑡)} = 𝑔(𝑝) 

1. 1 1

𝑝
 

2. 𝑡 1

𝑝2
 

3. 𝑡2 2!

𝑝3
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4. 𝑡𝑛, 𝑛 ∈ 𝑁 𝑛!

𝑝𝑛+1
 

5. 𝑡𝑛, 𝑛 > −1 Γ(𝑛 + 1)

𝑝𝑛+1
 

6. 𝑒𝑎𝑡 1

𝑝 − 𝑎
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎

𝑝2 + 𝑎2
 

8. 𝑐𝑜𝑠𝑎𝑡 𝑝

𝑝2 + 𝑎2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎

𝑝2 − 𝑎2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 𝑝

𝑝2 − 𝑎2
 

 

TABLE: 3 INVERSE LAPLACE TRANSFORMS OF USEFUL FUNCTIONS [31, 59-61] 

S.N. 𝑔(𝑝) 𝐺(𝑡) = 𝐿−1{𝑔(𝑝)} 

1. 1 1 

2. 1

𝑝2
 

𝑡 

3. 1

𝑝3
 

𝑡2

2!
 

4. 1

𝑝𝑛+1
, 𝑛𝜖𝑁 

𝑡𝑛

𝑛!
 

5. 1

𝑝𝑛+1
, 𝑛 > −1 

𝑡𝑛

Γ(𝑛 + 1)
 

6. 1

𝑝 − 𝑎
 

𝑒𝑎𝑡 

7. 1

𝑝2 + 𝑎2
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

8. 𝑝

𝑝2 + 𝑎2
 𝑐𝑜𝑠𝑎𝑡 

9. 1

𝑝2 − 𝑎2
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

10. 𝑝

𝑝2 − 𝑎2
 𝑐𝑜𝑠ℎ𝑎𝑡 

 

 

 

 

http://www.jetir.org/


© 2021 JETIR June 2021, Volume 8, Issue 6                                                               www.jetir.org (ISSN-2349-5162) 

JETIR2106107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a773 
 

LAPLACE TRANSFORM FOR SYSTEM OF SECOND KIND LINEAR VOLTERRA INTEGRO-

DIFFERENTIAL EQUATIONS:   

The general system of second kind linear Volterra integro-ordinary differential equations is given by [81]:  

𝑢1
(𝑙)(𝑥) = 𝑓1(𝑥) + {

∫ 𝐾11(𝑥 − 𝑡)
𝑥

0
𝑢1(𝑡)𝑑𝑡 + ∫ 𝐾12(𝑥 − 𝑡)

𝑥

0
𝑢2(𝑡)𝑑𝑡

+⋯ .+∫ 𝐾1𝑛(𝑥 − 𝑡)
𝑥

0
𝑢𝑛(𝑡)𝑑𝑡

}

𝑢2
(𝑙)(𝑥) = 𝑓2(𝑥) + {

∫ 𝐾21(𝑥 − 𝑡)
𝑥

0
𝑢1(𝑡)𝑑𝑡 + ∫ 𝐾22(𝑥 − 𝑡)

𝑥

0
𝑢2(𝑡)𝑑𝑡

+⋯ .+∫ 𝐾2𝑛(𝑥 − 𝑡)
𝑥

0
𝑢𝑛(𝑡)𝑑𝑡

}

……………………………………………………………………………

𝑢𝑛
(𝑙)(𝑥) = 𝑓𝑛(𝑥) + {

∫ 𝐾𝑛1(𝑥 − 𝑡)
𝑥

0
𝑢1(𝑡)𝑑𝑡 + ∫ 𝐾𝑛2(𝑥 − 𝑡)

𝑥

0
𝑢2(𝑡)𝑑𝑡

+⋯ .+∫ 𝐾𝑛𝑛(𝑥 − 𝑡)
𝑥

0
𝑢𝑛(𝑡)𝑑𝑡

}
]
 
 
 
 
 
 
 
 

    (1) 

with 

{
 
 

 
 𝑢1

(𝑚)(0) = 𝑎1𝑚, 𝑚 = 0,1,2, … , 𝑙 − 1;

𝑢2
(𝑚)(0) = 𝑎2𝑚, 𝑚 = 0,1,2, … , 𝑙 − 1;

………………………………………… ,

𝑢𝑛
(𝑚)(0) = 𝑎𝑛𝑚, 𝑚 = 0,1,2,… , 𝑙 − 1}

 
 

 
 

       (2) 

Operating Laplace transform on system (1) and using convolution theorem of Laplace transform, we have 

𝐿{𝑢1
(𝑙)(𝑥)} = 𝐿{𝑓1(𝑥)} + [

𝐿{𝐾11(𝑥)}𝐿{𝑢1(𝑥)} + 𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾1𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

𝐿{𝑢2
(𝑙)(𝑥)} = 𝐿{𝑓2(𝑥)} + [

𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)} + 𝐿{𝐾22(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

……………………………………………………………………………

𝐿{𝑢𝑛
(𝑙)(𝑥)} = 𝐿{𝑓𝑛(𝑥)} + [

𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)} + 𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾𝑛𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]
]
 
 
 
 
 
 

     (3) 

Using the property “Laplace transforms of derivatives” on system (3), we have 

{
 
 

 
 𝑝𝑙𝐿{𝑢1(𝑥)}

−𝑝𝑙−1𝑢1(0)

−𝑝𝑙−2𝑢1
′(0)

−⋯ . .−𝑢1
(𝑙−1)(0)}

 
 

 
 

= 𝐿{𝑓1(𝑥)} + [

𝐿{𝐾11(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾1𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

{
 
 

 
 𝑝𝑙𝐿{𝑢2(𝑥)}

−𝑝𝑙−1𝑢2(0)

−𝑝𝑙−2𝑢2
′(0)

−⋯ . .−𝑢2
(𝑙−1)(0)}

 
 

 
 

= 𝐿{𝑓2(𝑥)} + [

𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾22(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

……………………………………………………………………………

{
 
 

 
 𝑝𝑙𝐿{𝑢𝑛(𝑥)}

−𝑝𝑙−1𝑢𝑛(0)

−𝑝𝑙−2𝑢𝑛
′(0)

−⋯ . .−𝑢𝑛
(𝑙−1)(0)}

 
 

 
 

= 𝐿{𝑓𝑛(𝑥)} + [

𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾𝑛𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (4) 

Using equation (2) in system (4), we get 

http://www.jetir.org/


© 2021 JETIR June 2021, Volume 8, Issue 6                                                               www.jetir.org (ISSN-2349-5162) 

JETIR2106107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a774 
 

{
 
 

 
 𝑝𝑙𝐿{𝑢1(𝑥)}

−𝑝𝑙−1𝑎10
−𝑝𝑙−2𝑎11

−⋯ . .−𝑎1(𝑙−1)}
 
 

 
 

= 𝐿{𝑓1(𝑥)} + [

𝐿{𝐾11(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾12(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾1𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

{
 
 

 
 𝑝𝑙𝐿{𝑢2(𝑥)}

−𝑝𝑙−1𝑎20
−𝑝𝑙−2𝑎21

−⋯ . .−𝑎2(𝑙−1)}
 
 

 
 

= 𝐿{𝑓2(𝑥)} + [

𝐿{𝐾21(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾22(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾2𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

……………………………………………………………………………

{
 
 

 
 𝑝𝑙𝐿{𝑢𝑛(𝑥)}

−𝑝𝑙−1𝑎𝑛0
−𝑝𝑙−2𝑎𝑛1

−⋯ . .−𝑎𝑛(𝑙−1)}
 
 

 
 

= 𝐿{𝑓𝑛(𝑥)} + [

𝐿{𝐾𝑛1(𝑥)}𝐿{𝑢1(𝑥)}

+𝐿{𝐾𝑛2(𝑥)}𝐿{𝑢2(𝑥)}

+⋯ .+𝐿{𝐾𝑛𝑛(𝑥)}𝐿{𝑢𝑛(𝑥)}
]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (5) 

After simplification system (5), we have 

[
(𝑝𝑙 − 𝐿{𝐾11(𝑥)})𝐿{𝑢1(𝑥)} − 𝐿{𝐾12(𝑥)}{𝑢2(𝑥)}

−⋯…− 𝐿{𝐾1𝑛(𝑥)}{𝑢𝑛(𝑥)}
] =

[
 
 
 
 

𝐿{𝑓1(𝑥)}

+𝑝𝑙−1𝑎10
+𝑝𝑙−2𝑎11

+⋯ .+𝑎1(𝑙−1)]
 
 
 
 

[
−𝐿{𝐾21(𝑥)}{𝑢1(𝑥)} + (𝑝

𝑙 − 𝐿{𝐾22(𝑥)})𝐿{𝑢2(𝑥)}

−⋯…− 𝐿{𝐾2𝑛(𝑥)}{𝑢𝑛(𝑥)}
] =

[
 
 
 
 

𝐿{𝑓2(𝑥)}

+𝑝𝑙−1𝑎20
+𝑝𝑙−2𝑎21

+⋯ . .+𝑎2(𝑙−1)]
 
 
 
 

… . ……………………… .……………………………………………

[
−𝐿{𝐾𝑛1(𝑥)}{𝑢1(𝑥)} − 𝐿{𝐾𝑛2(𝑥)}{𝑢2(𝑥)}

−⋯…+ (𝑝𝑙 − 𝐿{𝐾𝑛𝑛(𝑥)})𝐿{𝑢𝑛(𝑥)}
] =

[
 
 
 
 

𝐿{𝑓𝑛(𝑥)}

+𝑝𝑙−1𝑎𝑛0
+𝑝𝑙−2𝑎𝑛1

+⋯ . . +𝑎𝑛(𝑙−1)]
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 

    (6) 

The solution of system (6) is given as 
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𝐿{𝑢1(𝑥)} =

|

|

|

|

|

{
 
 

 
 𝐿{𝑓1(𝑥)}

+𝑝𝑙−1𝑎10
+𝑝𝑙−2𝑎11

+⋯ .+𝑎1(𝑙−1)}
 
 

 
 

−𝐿{𝐾12(𝑥)} ……… . . −𝐿{𝐾1𝑛(𝑥)}

{
 
 

 
 𝐿{𝑓2(𝑥)}

+𝑝𝑙−1𝑎20
+𝑝𝑙−2𝑎21

+⋯ . . +𝑎2(𝑙−1)}
 
 

 
 

(𝑝𝑙 − 𝐿{𝐾22(𝑥)}) … . . −𝐿{𝐾2𝑛(𝑥)}

………… …………… . . ……… . . …………… . .

 

{
 
 

 
 𝐿{𝑓𝑛(𝑥)}

+𝑝𝑙−1𝑎𝑛0
+𝑝𝑙−2𝑎𝑛1

+⋯ . .+𝑎𝑛(𝑙−1)}
 
 

 
 

−𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙 − 𝐿{𝐾𝑛𝑛(𝑥)})|

|

|

|

|

|

(𝑝𝑙 − 𝐿{𝐾11(𝑥)}) −𝐿{𝐾12(𝑥)} ……… . . −𝐿{𝐾1𝑛(𝑥)}

−𝐿{𝐾21(𝑥)} (𝑝𝑙 − 𝐿{𝐾22(𝑥)}) … . . −𝐿{𝐾2𝑛(𝑥)}
………… …………… . . ……… . . …………… . .

−𝐿{𝐾𝑛1(𝑥)} −𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙 − 𝐿{𝐾𝑛𝑛(𝑥)})

|

 

𝐿{𝑢2(𝑥)} =

|

|

|

|

| (𝑝𝑙 − 𝐿{𝐾11(𝑥)})

{
 
 

 
 𝐿{𝑓1(𝑥)}

+𝑝𝑙−1𝑎10
+𝑝𝑙−2𝑎11

+⋯ .+𝑎1(𝑙−1)}
 
 

 
 

……… . . −𝐿{𝐾1𝑛(𝑥)}

−𝐿{𝐾21(𝑥)}

{
 
 

 
 𝐿{𝑓2(𝑥)}

+𝑝𝑙−1𝑎20
+𝑝𝑙−2𝑎21

+⋯ . .+𝑎2(𝑙−1)}
 
 

 
 

… . . −𝐿{𝐾2𝑛(𝑥)}

………… …………… . . ……… . . …………… . .

−𝐿{𝐾𝑛1(𝑥)}

{
 
 

 
 𝐿{𝑓𝑛(𝑥)}

+𝑝𝑙−1𝑎𝑛0
+𝑝𝑙−2𝑎𝑛1

+⋯ . .+𝑎𝑛(𝑙−1)}
 
 

 
 

……… . . (𝑝𝑙 − 𝐿{𝐾𝑛𝑛(𝑥)})|

|

|

|

|

|

(𝑝𝑙 − 𝐿{𝐾11(𝑥)}) −𝐿{𝐾12(𝑥)} ……… . . −𝐿{𝐾1𝑛(𝑥)}

−𝐿{𝐾21(𝑥)} (𝑝𝑙 − 𝐿{𝐾22(𝑥)}) … . . −𝐿{𝐾2𝑛(𝑥)}
………… …………… . . ……… . . …………… . .

−𝐿{𝐾𝑛1(𝑥)} −𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙 − 𝐿{𝐾𝑛𝑛(𝑥)})

|

 

…………………………………………………………………………………… .. 
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𝐿{𝑢𝑛(𝑥)} =

|

|

|

|

|(𝑝𝑙 − 𝐿{𝐾11(𝑥)}) −𝐿{𝐾12(𝑥)} ……… . .

{
 
 

 
 𝐿{𝑓1(𝑥)}

+𝑝𝑙−1𝑎10
+𝑝𝑙−2𝑎11

+⋯ .+𝑎1(𝑙−1)}
 
 

 
 

−𝐿{𝐾21(𝑥)} (𝑝𝑙 − 𝐿{𝐾22(𝑥)}) … . .

{
 
 

 
 𝐿{𝑓2(𝑥)}

+𝑝𝑙−1𝑎20
+𝑝𝑙−2𝑎21

+⋯ . . +𝑎2(𝑙−1)}
 
 

 
 

………… …………… . . ……… . . …………… . .

−𝐿{𝐾𝑛1(𝑥)} −𝐿{𝐾𝑛2(𝑥)} ……… . .

{
 
 

 
 𝐿{𝑓𝑛(𝑥)}

+𝑝𝑙−1𝑎𝑛0
+𝑝𝑙−2𝑎𝑛1

+⋯ . . +𝑎𝑛(𝑙−1)}
 
 

 
 

|

|

|

|

|

|

(𝑝𝑙 − 𝐿{𝐾11(𝑥)}) −𝐿{𝐾12(𝑥)} ……… . . −𝐿{𝐾1𝑛(𝑥)}

−𝐿{𝐾21(𝑥)} (𝑝𝑙 − 𝐿{𝐾22(𝑥)}) … . . −𝐿{𝐾2𝑛(𝑥)}
………… …………… . . ……… . . …………… . .

−𝐿{𝐾𝑛1(𝑥)} −𝐿{𝐾𝑛2(𝑥)} ……… . . (𝑝𝑙 − 𝐿{𝐾𝑛𝑛(𝑥)})

|

 

After simplification of above equations, we have the values of 𝐿{𝑢1(𝑥)}, 𝐿{𝑢2(𝑥)}, … . , 𝐿{𝑢𝑛(𝑥)} . After 

taking the inverse Laplace transforms on these values, we get the required values of 𝑢1(𝑥), 𝑢2(𝑥), … . , 𝑢𝑛(𝑥). 

NUMERICAL PROBLEMS: In this part of the paper, some numerical problems have been considered for 

explaining the complete methodology. 

Problem: 1 Consider the following system of second kind linear Volterra integro-differential equations  

𝑢1
′(𝑥) = 1 + 𝑥 −

𝑥2

2
+

𝑥3

3
+ ∫ (𝑥 − 𝑡)𝑢1(𝑡)𝑑𝑡

𝑥

0
+ ∫ (𝑥 − 𝑡 + 1)𝑢2(𝑡)𝑑𝑡

𝑥

0

𝑢2
′(𝑥) = −1 − 3𝑥 −

3𝑥2

2
−

𝑥3

3
+ ∫ (𝑥 − 𝑡 + 1)𝑢1(𝑡)𝑑𝑡

𝑥

0
+ ∫ (𝑥 − 𝑡)𝑢2(𝑡)𝑑𝑡

𝑥

0

}  (7) 

with 𝑢1(0) = 1, 𝑢2(0) = 1            (8) 

Operating Laplace transform on system (7) and using convolution theorem of Laplace transform, we have 

𝐿{𝑢1
′(𝑥)} = [

𝐿{1} + 𝐿{𝑥}

−
1

2
𝐿{𝑥2} +

1

3
𝐿{𝑥3}

] + [
𝐿{𝑥}𝐿{𝑢1(𝑥)}

+𝐿{𝑥 − 1}𝐿{𝑢2(𝑥)}
]

𝐿{𝑢2
′(𝑥)} = [

−𝐿{1} − 3𝐿{𝑥}

−
3

2
𝐿{𝑥2} −

1

3
𝐿{𝑥3}

] + [
𝐿{𝑥 − 1}𝐿{𝑢1(𝑥)}

+𝐿{𝑥}𝐿{𝑢2(𝑥)}
]
}
 
 

 
 

    (9) 

Using the property “Laplace transforms of derivatives” on system (9), we have 
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𝑝𝐿{𝑢1(𝑥)} − 𝑢1(0) = [

1

𝑝
+

1

𝑝2

−
1

2
(
2

𝑝3
) +

1

3
(
6

𝑝4
)
] + [

1

𝑝2
𝐿{𝑢1(𝑥)}

+ (
1

𝑝2
−

1

𝑝
) 𝐿{𝑢2(𝑥)}

]

𝑝𝐿{𝑢2(𝑥)} − 𝑢2(0) = [
−
1

𝑝
− 3

1

𝑝2

−
3

2
(
2

𝑝3
) −

1

3
(
6

𝑝4
)
] + [

(
1

𝑝2
−

1

𝑝
)𝐿{𝑢1(𝑥)}

1

𝑝2
𝐿{𝑢2(𝑥)}

]

}
  
 

  
 

   (10) 

Using equation (8) in system (10), we get 

𝑝𝐿{𝑢1(𝑥)} − 1 = [

1

𝑝
+

1

𝑝2

−
1

2
(
2

𝑝3
) +

1

3
(
6

𝑝4
)
] + [

1

𝑝2
𝐿{𝑢1(𝑥)}

+ (
1

𝑝2
−

1

𝑝
) 𝐿{𝑢2(𝑥)}

]

𝑝𝐿{𝑢2(𝑥)} − 1 = [
−
1

𝑝
− 3

1

𝑝2

−
3

2
(
2

𝑝3
) −

1

3
(
6

𝑝4
)
] + [

(
1

𝑝2
−

1

𝑝
) 𝐿{𝑢1(𝑥)}

1

𝑝2
𝐿{𝑢2(𝑥)}

]

}
  
 

  
 

     (11) 

After simplification system (11), we have 

(𝑝 −
1

𝑝2
) 𝐿{𝑢1(𝑥)} − (

1

𝑝2
−

1

𝑝
) 𝐿{𝑢2(𝑥)} = (1 +

1

𝑝
+

1

𝑝2
−

1

𝑝3
+

2

𝑝4
)

− (
1

𝑝2
−

1

𝑝
)𝐿{𝑢1(𝑥)} + (𝑝 −

1

𝑝2
)𝐿{𝑢2(𝑥)} = (1 −

1

𝑝
−

3

𝑝2
−

3

𝑝3
−

2

𝑝4
)
}    (12) 

The solution of system (12) is given by 

[
 
 
 
 
 

𝐿{𝑢1(𝑥)} =

|
(1+

1

𝑝
+
1

𝑝2
−
1

𝑝3
+
2

𝑝4
) −(

1

𝑝2
−
1

𝑝
)

(1−
1

𝑝
−
3

𝑝2
−
3

𝑝3
−
2

𝑝4
) (𝑝−

1

𝑝2
)
|

|
(𝑝−

1

𝑝2
) −(

1

𝑝2
−
1

𝑝
)

−(
1

𝑝2
−
1

𝑝
) (𝑝−

1

𝑝2
)
|

=
1

𝑝
+

1

𝑝2
+

2

𝑝3

]
 
 
 
 
 

[
 
 
 
 
 

𝐿{𝑢2(𝑥)} =

|
(𝑝−

1

𝑝2
) (1+

1

𝑝
+
1

𝑝2
−
1

𝑝3
+
2

𝑝4
)

−(
1

𝑝2
−
1

𝑝
) (1−

1

𝑝
−
3

𝑝2
−
3

𝑝3
−
2

𝑝4
)
|

|
(𝑝−

1

𝑝2
) −(

1

𝑝2
−
1

𝑝
)

−(
1

𝑝2
−
1

𝑝
) (𝑝−

1

𝑝2
)
|

=
1

𝑝
−

1

𝑝2
−

2

𝑝3

]
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

      (13) 

Operating inverse Laplace transforms on system (13), we get the required solution of system (7) with (8) as 

𝑢1(𝑥) = 𝐿−1 {
1

𝑝
+

1

𝑝2
+

2

𝑝3
} = 𝐿−1 {

1

𝑝
} + 𝐿−1 {

1

𝑝2
} + 2𝐿−1 {

1

𝑝3
} = 1 + 𝑥 + 𝑥2

𝑢2(𝑥) = 𝐿
−1 {

1

𝑝
−

1

𝑝2
−

2

𝑝3
} = 𝐿−1 {

1

𝑝
} − 𝐿−1 {

1

𝑝2
} − 2𝐿−1 {

1

𝑝3
} = 1 − 𝑥 − 𝑥2

}. 
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Problem: 2 Consider the following system of second kind linear Volterra integro-differential equations  

𝑢1
′(𝑥) = 2 + 𝑒𝑥 − 3𝑒2𝑥 + 𝑒3𝑥 + 6∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0
− 3∫ 𝑢3(𝑡)𝑑𝑡

𝑥

0

𝑢2
′(𝑥) = 𝑒𝑥 + 2𝑒2𝑥 − 𝑒3𝑥 − ∫ 𝑢1(𝑡)𝑑𝑡

𝑥

0
+ 3∫ 𝑢3(𝑡)𝑑𝑡

𝑥

0

𝑢3
′(𝑥) = −𝑒𝑥 + 𝑒2𝑥 + 3𝑒3𝑥 + ∫ 𝑢1(𝑡)𝑑𝑡

𝑥

0
− 2∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0 }
 

 
     (14) 

with 𝑢1(0) = 1, 𝑢2(0) = 1, 𝑢3(0) = 1        (15) 

Operating Laplace transform on system (14) and using convolution theorem of Laplace transform, we have 

𝐿{𝑢1
′(𝑥)} = 2𝐿{1} + 𝐿{𝑒𝑥} − 3𝐿{𝑒2𝑥} + 𝐿{𝑒3𝑥} + 6𝐿{1}𝐿{𝑢2(𝑥)} − 3𝐿{1}𝐿{𝑢3(𝑥)}

𝐿{𝑢2
′(𝑥)} = 𝐿{𝑒𝑥} + 2𝐿{𝑒2𝑥} − 𝐿{𝑒3𝑥} − 𝐿{1}𝐿{𝑢1(𝑥)} + 3𝐿{1}𝐿{𝑢3(𝑥)}

𝐿{𝑢3
′(𝑥)} = −𝐿{𝑒𝑥} + 𝐿{𝑒2𝑥} + 3𝐿{𝑒3𝑥} + 𝐿{1}𝐿{𝑢1(𝑥)} − 2𝐿{1}𝐿{𝑢2(𝑥)}

} 

Using the property “Laplace transforms of derivatives” on above system, we have 

𝑝𝐿{𝑢1(𝑥)} − 𝑢1(0) =
2

𝑝
+

1

𝑝−1
−

3

𝑝−2
+

1

𝑝−3
+

6

𝑝
𝐿{𝑢2(𝑥)} −

3

𝑝
𝐿{𝑢3(𝑥)}

𝑝𝐿{𝑢2(𝑥)} − 𝑢2(0) =
1

𝑝−1
+

2

𝑝−2
−

1

𝑝−3
−

1

𝑝
𝐿{𝑢1(𝑥)} +

3

𝑝
𝐿{𝑢3(𝑥)}

𝑝𝐿{𝑢3(𝑥)} − 𝑢3(0) = −
1

𝑝−1
+

1

𝑝−2
+

3

𝑝−3
+

1

𝑝
𝐿{𝑢1(𝑥)} −

2

𝑝
𝐿{𝑢2(𝑥)} }

 
 

 
 

    (16) 

Using equation (15) in system (16), we get 

𝑝𝐿{𝑢1(𝑥)} − 1 =
2

𝑝
+

1

𝑝−1
−

3

𝑝−2
+

1

𝑝−3
+

6

𝑝
𝐿{𝑢2(𝑥)} −

3

𝑝
𝐿{𝑢3(𝑥)}

𝑝𝐿{𝑢2(𝑥)} − 1 =
1

𝑝−1
+

2

𝑝−2
−

1

𝑝−3
−

1

𝑝
𝐿{𝑢1(𝑥)} +

3

𝑝
𝐿{𝑢3(𝑥)}

𝑝𝐿{𝑢3(𝑥)} − 1 = −
1

𝑝−1
+

1

𝑝−2
+

3

𝑝−3
+

1

𝑝
𝐿{𝑢1(𝑥)} −

2

𝑝
𝐿{𝑢2(𝑥)} }

 
 

 
 

    (17) 

After simplification system (17), we have 

𝑝𝐿{𝑢1(𝑥)} −
6

𝑝
𝐿{𝑢2(𝑥)} +

3

𝑝
𝐿{𝑢3(𝑥)} = (1 +

2

𝑝
+

1

𝑝−1
−

3

𝑝−2
+

1

𝑝−3
)

1

𝑝
𝐿{𝑢1(𝑥)} + 𝑝𝐿{𝑢2(𝑥)} −

3

𝑝
𝐿{𝑢3(𝑥)} = (1 +

1

𝑝−1
+

2

𝑝−2
−

1

𝑝−3
)

−
1

𝑝
𝐿{𝑢1(𝑥)} +

2

𝑝
𝐿{𝑢2(𝑥)} + 𝑝𝐿{𝑢3(𝑥)} = (1 −

1

𝑝−1
+

1

𝑝−2
+

3

𝑝−3
) }
 
 

 
 

    (18) 

The solution of system (18) is given by 

𝐿{𝑢1(𝑥)} =

|

|

(1+
2

𝑝
+

1

𝑝−1
−

3

𝑝−2
+

1

𝑝−3
) (−

6

𝑝
) (

3

𝑝
)

(1+
1

𝑝−1
+

2

𝑝−2
−

1

𝑝−3
) 𝑝 (−

3

𝑝
)

(1−
1

𝑝−1
+

1

𝑝−2
+

3

𝑝−3
) (

2

𝑝
) 𝑝

|

|

|

|

𝑝 (−
6

𝑝
) (

3

𝑝
)

(
1

𝑝
) 𝑝 (−

3

𝑝
)

(−
1

𝑝
) (

2

𝑝
) 𝑝

|

|

=
1

𝑝−1
       (19) 
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𝐿{𝑢2(𝑥)} =

|

|

𝑝 (1+
2

𝑝
+

1

𝑝−1
−

3

𝑝−2
+

1

𝑝−3
) (

3

𝑝
)

(
1

𝑝
) (1+

1

𝑝−1
+

2

𝑝−2
−

1

𝑝−3
) (−

3

𝑝
)

(−
1

𝑝
) (1−

1

𝑝−1
+

1

𝑝−2
+

3

𝑝−3
) 𝑝

|

|

|

|

𝑝 (−
6

𝑝
) (

3

𝑝
)

(
1

𝑝
) 𝑝 (−

3

𝑝
)

(−
1

𝑝
) (

2

𝑝
) 𝑝

|

|

=
1

𝑝−2
       (20) 

𝐿{𝑢3(𝑥)} =

|

|

𝑝 (−
6

𝑝
) (1+

2

𝑝
+

1

𝑝−1
−

3

𝑝−2
+

1

𝑝−3
)

(
1

𝑝
) 𝑝 (1+

1

𝑝−1
+

2

𝑝−2
−

1

𝑝−3
)

(−
1

𝑝
) (

2

𝑝
) (1−

1

𝑝−1
+

1

𝑝−2
+

3

𝑝−3
)

|

|

|

|

𝑝 (−
6

𝑝
) (

3

𝑝
)

(
1

𝑝
) 𝑝 (−

3

𝑝
)

(−
1

𝑝
) (

2

𝑝
) 𝑝

|

|

=
1

𝑝−3
       (21) 

Operating inverse Laplace transforms on equations (19), (20) and (21), we get the required solution of 

system (14) with (15) as 

𝑢1(𝑥) = 𝐿
−1 {

1

𝑝−1
} = 𝑒𝑥

𝑢2(𝑥) = 𝐿
−1 {

1

𝑝−2
} = 𝑒2𝑥

𝑢3(𝑥) = 𝐿
−1 {

1

𝑝−3
} = 𝑒3𝑥}

 
 

 
 

. 

CONCLUSIONS: In this paper, authors successfully discussed the Laplace transform for the solution of 

system of second kind linear Volterra integro-differential equations and complete methodology explained by 

considering two numerical problems. The results of numerical problems show that the Laplace transform is 

very effective and useful integral transform for determining the solution of system of second kind linear 

Volterra integro-differential equations.  
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